96 research outputs found

    Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems

    Get PDF
    In this paper we present a rigorous cost and error analysis of a multilevel estimator based on randomly shifted Quasi-Monte Carlo (QMC) lattice rules for lognormal diffusion problems. These problems are motivated by uncertainty quantification problems in subsurface flow. We extend the convergence analysis in [Graham et al., Numer. Math. 2014] to multilevel Quasi-Monte Carlo finite element discretizations and give a constructive proof of the dimension-independent convergence of the QMC rules. More precisely, we provide suitable parameters for the construction of such rules that yield the required variance reduction for the multilevel scheme to achieve an ε\varepsilon-error with a cost of O(ε−θ)\mathcal{O}(\varepsilon^{-\theta}) with θ<2\theta < 2, and in practice even θ≈1\theta \approx 1, for sufficiently fast decaying covariance kernels of the underlying Gaussian random field inputs. This confirms that the computational gains due to the application of multilevel sampling methods and the gains due to the application of QMC methods, both demonstrated in earlier works for the same model problem, are complementary. A series of numerical experiments confirms these gains. The results show that in practice the multilevel QMC method consistently outperforms both the multilevel MC method and the single-level variants even for non-smooth problems.Comment: 32 page

    Consensus-based rare event estimation

    Full text link
    In this paper, we introduce a new algorithm for rare event estimation based on adaptive importance sampling. We consider a smoothed version of the optimal importance sampling density, which is approximated by an ensemble of interacting particles. The particle dynamics is governed by a McKean-Vlasov stochastic differential equation, which was introduced and analyzed in (Carrillo et al., Stud. Appl. Math. 148:1069-1140, 2022) for consensus-based sampling and optimization of posterior distributions arising in the context of Bayesian inverse problems. We develop automatic updates for the internal parameters of our algorithm. This includes a novel time step size controller for the exponential Euler method, which discretizes the particle dynamics. The behavior of all parameter updates depends on easy to interpret accuracy criteria specified by the user. We show in numerical experiments that our method is competitive to state-of-the-art adaptive importance sampling algorithms for rare event estimation, namely a sequential importance sampling method and the ensemble Kalman filter for rare event estimation
    • …
    corecore